
Hybrid Index Maintenance for Growing Text Collections

Stefan Büttcher Charles L. A. Clarke Brad Lushman

School of Computer Science
University of Waterloo, Canada

{sbuettch,claclark,bmlushma}@plg.uwaterloo.ca

ABSTRACT
We present a new family of hybrid index maintenance strate-
gies to be used in on-line index construction for monotoni-
cally growing text collections. These new strategies improve
upon recent results for hybrid index maintenance in dynamic
text retrieval systems. Like previous techniques, our new
method distinguishes between short and long posting lists:
While short lists are maintained using a merge strategy, long
lists are kept separate and are updated in-place. This way,
costly relocations of long posting lists are avoided.

We discuss the shortcomings of previous hybrid methods
and give an experimental evaluation of the new technique,
showing that its index maintenance performance is superior
to that of the earlier methods, especially when the amount
of main memory available to the indexing system is small.
We also present a complexity analysis which proves that,
under a Zipfian term distribution, the asymptotical number
of disk accesses performed by the best hybrid maintenance
strategy is linear in the size of the text collection, implying
the asymptotical optimality of the proposed strategy.

Categories and Subject Descriptors
H.2.4 [Systems]: Textual databases; H.3.4 [Systems and
Software]: Performance evaluation

General Terms
Experimentation, Performance

Keywords
Information Retrieval, Index Construction, Index Mainte-
nance, Merge, In-Place, Hybrid

1. INTRODUCTION
Index maintenance strategies for text retrieval systems in

dynamic search environments, where index update opera-
tions are interleaved with search queries, have been studied
intensively over the past few years. In general, every main-
tenance strategy can be described as a trade-off between

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’06, August 6–10, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-XXX-X/06/0008 ...$5.00.

index maintenance performance and query processing per-
formance. Index update operations can be carried out very
efficiently if we do not care about query processing perfor-
mance; spending more time on index reorganization tasks,
on the other hand, usually results in lower response times
when processing search queries.

Although fully dynamic text collections allow document
insertions, deletions, and modifications, in this paper we
only focus on document insertions and discuss the problem
of maintaining an inverted index for a monotonically grow-
ing text collection — a restriction that is quite common in
this area [6] [7] [11] [12] [14]. For a discussion of index main-
tenance strategies in the presence of document deletions, see
Chiueh and Huang [3] or Büttcher and Clarke [1].

Virtually all existing index maintenance strategies for
monotonically growing text collections work by accumu-
lating postings for incoming documents in main memory,
building an in-memory inverted file, and only combining this
in-memory index with the existing on-disk data structures
when a certain, pre-defined memory utilization threshold is
exceeded. This way, disk accesses can be amortized over
a larger number of index update operations, resulting in
increased indexing performance. The individual update
strategies only differ in how they combine the accumulated
in-memory data with the data stored on disk.

Traditionally, index maintenance strategies for text re-
trieval systems based on inverted files have either employed
an in-place [14] or a merge-based [6] update scheme. In
an in-place update scheme, whenever the data in memory
have to be combined with the existing on-disk index, the
in-memory posting lists are appended to the existing ones
on disk. In general, this requires relocating existing on-
disk lists. These relocations are time-consuming and can be
avoided by using an overallocation strategy that leaves some
amount of free space after every on-disk posting list. Only
when the amount of free space is too small for the postings
that are currently held in memory, the whole posting list has
to be moved to a new location, where there is enough space
for all postings for the given term. In contrast, merge-based
strategies create a new on-disk inverted file by combining
an existing one with the in-memory data. Although this
requires a great number of disk operations, since the entire
on-disk index has to be read, it usually can be done fairly
efficiently because the number of disk seeks involved is very
small, thanks to the largely sequential disk access pattern.

Roughly speaking, merge-based strategies are better at
dealing with short posting lists, while in-place methods are
better at handling long posting lists. Recently, we have pre-

"and" "of" "the"

term postings

"0"

term postings term postings term postings term postings term postings term postings term postings

on-disk inverted file

in-memory search data structure

Figure 1: General structure of an inverted file (schematical). Usually, a B-tree or a sorted list is chosen as
the in-memory data structure. If the terms and their posting lists are stored in lexicographical order in the
on-disk index, only a very small number of term descriptors needs to be kept in memory.

sented a family of hybrid strategies, based on a distinction
between short and long posting lists [2]. Hybrid strate-
gies maintain short posting lists following a merge-based
approach, while long lists are updated in-place. By com-
bining the two paradigms, they achieve better indexing per-
formance than either approach alone.

In this paper, we present a new family of hybrid index
maintenance strategies. Our new approach is based upon
the same idea to distinguish between short and long posting
lists and to treat them in different ways, but it corrects some
shortcomings that we found in our previous technique. The
new approach is similar to the pulsing technique proposed
by Cutting and Pedersen [4] and allows the indexing system
to view a posting list as the concatenation of a long list and
a short list. It offers better indexing performance than the
old one, especially if main memory is stinted.

In the next section, we give a brief overview of related
work in the area of both off-line and on-line index con-
struction, summarizing existing techniques and discussing
the shortcomings of our previous hybrid index maintenance
method. Section 3 contains a description of the new method.
This is followed by an experimental evaluation of old and
new index maintenance strategies in section 4. Finally, we
give a theoretical analysis of the new hybrid method, in-
cluding a proof that, under a Zipfian term distribution, the
hybridization of Logarithmic Merge provides an amortized
per-posting index maintenance disk complexity of O(1).

2. RELATED WORK
In this section, we give a summary of existing results in

the area of off-line and on-line index construction.

Inverted Files and Off-Line Index Construction

Inverted files have been proved to be the most efficient
data structure in high-performance retrieval systems for
large text collections [18]. An inverted file realizes a map-
ping from terms to their posting lists. A term’s posting
list (also called inverted list) is a list of all occurrences of
that term. An inverted file is a collection of posting lists,
stored on a storage medium supporting random access. It is
equipped with some search data structure (usually a search
tree) that can be used to find the posting list associated
with a given term. An example is shown in Figure 1.

Off-line index construction methods for static text collec-
tions usually follow a collection partitioning approach that
splits the whole collection into a set of smaller subcollec-
tions, where the size of the individual subcollections is de-
termined by the amount of main memory in the system.
After an inverted file has been created for each such sub-
collection, all these sub-indices are combined in a multiway
merge process, yielding the final index representing the en-
tire collection. [9] [17] [5]

In the context of this paper, all inverted lists con-
tain full positional information, i.e. the exact locations

of all occurrences of a given term (as opposed to mere docu-
ment numbers). Inverted lists are split up into chunks con-
taining ≈ 30,000 postings, and each chunk is compressed
using a byte-aligned gap compression method [10], resulting
in an average storage requirement of ≈ 12 bits per posting.

The off-line process described above can be transformed
into an on-line method. Search queries are then processed by
fetching posting lists from all sub-indices created so far and
concatenating them. Query processing performance of this
strategy is very poor, of course, because all lists are heavily
fragmented, implying a great number of disk seeks during
query processing. We use this strategy as the baseline for
index maintenance performance and refer to it as No Merge

(because the inverted files are only merged after the whole
collection has been indexed).

An important property of inverted files is that, as long
as posting lists are stored in lexicographical order within
the inverted file, the search data structure does not need to
explicitly contain the position of each term’s posting list.
For example, if we know the positions of the list for the
terms “impaired” and “impolite”, then we can easily find
all postings for “implicit” by reading all on-disk data be-
tween “impaired” and “impolite”. If the unexplored area
between two such terms is fairly small (upper limit in our
implementation: 128 KB), this can be done very efficiently
and does not pose a performance problem. If we allow list
relocations, we lose this implicit information.

In-Place Index Maintenance

In-place index update schemes combine the existing on-
disk inverted file with the in-memory data by appending
all postings from the in-memory index to the correspond-
ing list in the on-disk inverted file (creating a new list if
necessary). To make this possible, they use overallocation
strategies: Whenever a posting list is written to disk, more
space is allocated than is actually needed. This space can
then be filled with postings from the in-memory index when
the system runs out of memory the next time. From time to
time, of course, lists have to be relocated in order to create
more room for new postings at the end of the list.

In general, there are two types of in-place update strate-
gies: Those that require on-disk posting lists to be contigu-
ous [8] and those that do not [14]. Forcing posting lists to
be contiguous minimizes the number of disk seeks necessary
to fetch a posting list (and thus maximizes query processing
performance). Allowing posting lists to be non-contiguous,
on the other hand, helps avoid list relocations. It therefore
increases index maintenance performance, but deteriorates
query performance, due to a greater number of disk seeks.

The main problem of in-place update with contiguous
posting lists is that, due to the frequent relocation of post-
ing lists, no pre-defined ordering on the terms in the inverted
file can be guaranteed. Therefore, it is necessary to maintain
an explicit vocabulary data structure, containing for every

 100%

 80%

60%

40%

20%

0%
 40 35 30 25 20 15 10 5 0N

um
be

r
of

 p
os

tin
gs

 in
 lo

ng
 li

st
s

Total number of postings (in billions)

Threshold T = 1,000,000
Threshold T = 2,000,000
Threshold T = 4,000,000

Figure 2: Total number of postings in the index vs.
number of postings in long lists. After 50% of the
GOV2 text collection have been indexed, more than
82% of all postings are found in lists longer than
1,000,000 postings.

term the position of its on-disk posting list. This data struc-
ture can then be used to update posting lists in the order in
which they are stored on disk. Since the vocabulary can be-
come very large (more than 50 million different terms for the
text collection used in our experiments), it does not fit into
main memory any more, and vocabulary maintenance – as
opposed to posting list maintenance – becomes a challenging
task (see [8] for details).

Merge-Based Index Maintenance

In merge-based index maintenance strategies, postings are
never directly added to an existing on-disk inverted list. In-
stead, whenever in-memory postings have to be combined
with on-disk data, the in-memory index is merged with an
existing on-disk inverted file, resulting in a new inverted
file that replaces the old one. The simplest merge strategy
is called Immediate Merge. At any given point in time,
this strategy maintains at most one active on-disk inverted
file. When the indexing system runs out of memory, the in-
memory data are merged with this inverted file, resulting in
a new inverted file that supersedes the old one. Since every
such merge operation requires the system to read the entire
current on-disk index, the total amount of disk operations
necessary to index a text collection containing N tokens is

d N

M
e

X

i=1

Θ(i · M) = Θ

„

N ·
N

M

«

,

where M is the number of postings that can be held in mem-
ory. Despite its simplicity and its obviously problematic
quadratic disk complexity, it seems to be very difficult to
find an in-place update scheme that outperforms the Imme-

diate Merge strategy (cf. Lester et al. [7] [8]).
Recently, it has been studied how allowing the indexing

system to maintain more than one inverted file at a time
affects the performance of merge-based update schemes.
Lester et al. [6] analyzed the case where the search system
is allowed to use k independent on-disk inverted files at a
time (for constant k). In this situation, an optimal index
maintenance strategy has an overall disk complexity of

Θ

N ·

„

N

M

«1/k
!

.

For k = 2, we refer to this strategy as Sqrt Merge.
Lester et al. [6] and Büttcher and Clarke [1] also looked

at the case where the maximum allowable number of on-disk

inverted files is not constant, but logarithmic in the current
size of the on-disk index. The strategy proposed by Büttcher
and Clarke makes use of the concept of index generation. An
on-disk inverted file is of

• generation 0 if it has been directly created from the
in-memory index;

• generation n+1 if it is the result of a merge operation
involving indices of generation n.

Whenever there is more than one on-disk index of the same
generation n, all indices of that generation are merged, re-
sulting in a new inverted file of generation n + 1. This pro-
cess is repeated until there are no more such collisions. This
strategy leads to a set of on-disk inverted files of exponen-
tially increasing size. Its total indexing disk complexity is

Θ

„

N · log
N

M

«

.

We refer to this strategy as Logarithmic Merge.

Hybrid Index Maintenance

Hybrid index maintenance is motivated by the fact that,
for large text collections, the vast majority of all postings
is found in very long posting lists containing several million
entries (as shown in Figure 2). Copying these very long
lists during re-merge operations (as required by Immediate

Merge, for example), is very costly and should be avoided.
Even though more modern strategies, like Sqrt Merge and
Logarithmic Merge, substantially reduce the number of
disk operations, the problem in principle remains the same.
Therefore, it seems promising to distinguish between long
and short posting lists and to update only short lists using
a merge strategy, while long lists are updated in-place.

Earlier this year, we have presented a family of hybrid
index maintenance strategies based on this distinction be-
tween short and long lists [2]. The basic idea is rather sim-
ple: As soon as the posting list for a given term exceeds
a certain length (we refer to this as the long list thresh-
old, denoted as T), is is declared long and moved from the
merge-updated part of the on-disk index to the in-place-
maintained part. Every posting list in the in-place part is
stored in an individual file. Whenever a frequent term with
long posting list is encountered during a merge operation,
its postings are appended to the corresponding file instead
of being transferred to the target index of the current merge
operation. From the indexing system’s point of view, each
long list is stored contiguously inside its file. The actual de-
tails (contiguousness, relocations) are left to the file system
implementation (in our experiments, the ext3 file system
that is part of the Linux kernel).

This technique can be combined with all three merge
strategies described above, resulting in three different hy-
brid index maintenance strategies. Since these hybrid strate-
gies require all long on-disk posting lists to be stored con-
tiguously, we refer to them as HIMC (Hybrid Immediate

Merge), HSMC (Hybrid Sqrt Merge), and HLMC (Hy-
brid Logarithmic Merge) – where the subscript “C” in-
dicates contiguous posting lists.

Shortcomings Hybrid Index Maintenance

The hybrid index maintenance strategies described above
have several serious flaws. For the sake of brevity, we only
discuss two major problems:

merge-maintained on-disk index

in-place-maintained on-disk index

in-memory index

inverted file

list segment

inverted file

list segment

inverted file

list segment

inverted file

list segment list segmentlist segment

term

term

term

term

list

list

list

list

Figure 3: Index layout for a hybrid maintenance
strategy with non-contiguous posting lists. Each
term’s posting list is the concatenation of a num-
ber of list segments found in the in-memory index,
the merge-maintained index, and the in-place index.
The sub-list found in the in-place part of the index
may consist of several non-contiguous segments.

1. Delegating the in-place update to the file system
is very convenient, but hides too much information
and therefore makes it difficult to analyze the hybrid
strategies. In particular, the rules that define under
what circumstances a posting list is relocated (to
avoid fragmentation) are unclear and may differ from
system to system – even from hard disk to hard disk.
Are the long posting lists really contiguous? Most
likely not, but we don’t know.

2. Assume the long list threshold of HIMC is chosen as
T = 106. After, say, 100 physical index updates, the
posting list of a term X exceeds this threshold and is
moved from the merge-maintained part of the on-disk
index to the in-place part. From that point on, it is
considered long and is always updated in-place. Since
it took this list 100 re-merge operations to reach the
threshold, on average we can expect to see 104 occur-
rences of the term between two physical index updates.
For only 104 new postings, however, it would certainly
be more efficient to store them in the merge-updated
part of the index, avoiding the additional disk seek(s)
caused by appending them to the end of the file asso-
ciated with the term X. With every additional merge
operation, this effect gets stronger, implying that the
performance of the strategies described above is highly
sensitive to the amount of main memory available.

In this paper, we remedy these problems. We present a new
family of hybrid strategies that is less sensitive to mem-
ory limitations and more amenable to a formal complexity
analysis, allowing us to get a deeper understanding of the
subtleties of index maintenance for dynamic text collections.

3. A NEW SET OF HYBRID STRATEGIES
Instead of enforcing a strict distinction between short and

long posting lists, as done in our previous approach to hybrid
index maintenance, the new strategies allow each posting
list to consist of two parts – a long one, updated in-place
(realized by a single, append-only inverted file), and a short
one, maintained using one of the merge strategies. Only
when the length of the short, merge-maintained part of the
posting list exceeds a pre-defined threshold value T , it is
removed from the merge part of the index and added to the
in-place part of the index. This method is similar to the

@addfile /u3/gov2/uncompressed/GX169/40.txt

@rank[bm25][docid][count=20][id=479] "<doc>".."</doc>" by \
"porche", "suv"

@addfile /u3/gov2/uncompressed/GX135/81.txt

@rank[bm25][docid][count=20][id=3219] "<doc>".."</doc>" by \
"volkswagen", "beetle", "convertible"

@addfile /u3/gov2/uncompressed/GX082/90.txt
@rank[bm25][docid][count=20][id=10406] "<doc>".."</doc>" by \

"problems", "hmong", "immigrants"

@addfile /u3/gov2/uncompressed/GX073/87.txt
@rank[bm25][docid][count=20][id=48490] "<doc>".."</doc>" by \

"lee", "county", "clerk", "courts"

Figure 4: Commands #53,437 - #53,445, taken from
the whole sequence consisting of 27,204 update com-
mands and 27,204 queries.

pulsing technique described by Cutting and Pedersen [4].
The resulting index layout is depicted in Figure 3.

The new hybrid strategies start like any of the non-hybrid
merge strategies described in section 2 (Immediate Merge,
Sqrt Merge, or Log. Merge). During a merge operation,
however, whenever a term is encountered for which there are
more than T postings participating in the merge operation,
all these postings are moved to the in-place part of the index
instead of the target inverted file of the merge operation.
This is done by simply appending the postings to the single
inverted file that represents the in-place part.

In contrast to the contiguous hybrid strategies discussed
in the previous section, our new strategies introduce addi-
tional non-contiguities in the on-disk posting lists (because
new postings are simply appended to the existing inverted
file), causing additional disk seeks at query time. By choos-
ing a large enough value for T , however, these query-time
disk seeks can be amortized over a longer, sequential read
operation If, for example, we choose T = 106, and the hard
drive can read 50,000 postings (sequentially) in the time
it requires to perform a single random disk seek, then the
relative slowdown caused by the additional disk seeks is at
most 50,000

1,000,000
= 5%. By choosing different threshold val-

ues T , it is possible to control index maintenance and query
processing performance. Smaller T values mean better up-
date performance (because more postings are moved to the
in-place part of the index). Greater T values mean better
query performance (by reducing the number of disk seeks
during query processing). In particular, T = ∞ represents a
pure merge-based strategy (e.g., Immediate Merge), while
T = 0 is equivalent to the No Merge strategy – both cre-
ate the same amount of fragmentation in the on-disk posting
lists. The exact effect of a given T value depends on hard
drive characteristics. By measuring both the disk’s band-
width and its seek latency, it is possible to find the right T

value for the relative slowdown tolerated. 1

Since, in the in-place part of the on-disk index, posting
list segments are not stored in any particular order, we need
an additional data structure that tells us for every term in
the inverted file the location of all its list segments. This
is similar to the problem we described when we discussed
the shortcomings of in-place update in section 2. This time,

1It needs to be mentioned here that the criterion that defines
when postings are transferred to the in-place index is slightly
grubby. In our system, all postings are compressed and thus
have different sizes, between 1 and 6 bytes, depending on
the term’s frequency and locality. This should be taken into
account. However, we decided to ignore this detail because
it would make the analysis of our method more complicated.

 24
 22
 20
 18
 16
 14
 12
 10
 8
 6

∞8.04.02.01.00.50.250.125

T
ot

al
 in

de
xi

ng
 ti

m
e

(in
 h

ou
rs

)

Long list threshold T (x 106)

(a) Index maintenance performance

HIM-NC / Immediate Merge
HSM-NC / Sqrt Merge

HSM-C / Sqrt Merge
HLM-NC / Logarithmic Merge

 1650
 1600
 1550
 1500
 1450
 1400
 1350
 1300
 1250
 1200

∞8.04.02.01.00.50.250.125A
ve

ra
ge

 ti
m

e
pe

r
qu

er
y

(in
 m

s)

Long list threshold T (x 106)

(b) Query processing performance

HIM-NC / Immediate Merge
HSM-NC / Sqrt Merge

HSM-C / Sqrt Merge
HLM-NC / Logarithmic Merge

Figure 5: Index maintenance and query processing performance for different strategies with various parameter
settings. T = ∞ represents the underlying non-hybrid strategy. T = 0 is equivalent to the No Merge strategy.

 11

 10

 9

 8

 7

 6

 5

 4

 1024 768 512 384 256 192 128 96 64

T
ot

al
 in

de
xi

ng
 ti

m
e

(in
 h

ou
rs

)

Main memory available for the in-memory index (in MB)

Logarithmic Merge
HLM-C (T=1,000,000)

HLM-NC (T=1,000,000)
No Merge (off-line)

Figure 6: Impact of memory size on index mainte-
nance performance. HLMC is more sensitive to the
amount of available main memory than HLMNC and
non-hybrid Logarithmic Merge.

however, the situation is different. Only frequent terms can
make it into in-place index, and their number is very small
(only 13,309 terms appear more than 105 times in the GOV2
text collection, for instance). We can therefore afford to keep
the meta-information that is necessary to efficiently find all
list segments for a frequent term in memory.

Depending on which merge strategy serves as starting
point for the respective hybrid strategy, we refer to the new
strategy as HIMNC (Immediate Merge), HSMNC (Sqrt

Merge), or HLMNC (Logarithmic Merge). In each case,
the subscript “NC” indicates non-contiguous posting lists

4. EXPERIMENTAL EVALUATION
Our experiments were conducted using the GOV2 text col-

lection used in the TREC Terabyte track2. GOV2 consists of
25.2 million documents with a total size of 426 GB. In order
to be able to measure index maintenance and query pro-
cessing performance at the same time, we created a mixed
update/search sequence consisting of 27,204 update opera-
tions and 27,204 search queries (randomly taken from the
50,000 queries used in the effiency task of the 2005 TREC
Terabyte track), simulating an on-line search environment.
A short subsequence is shown in Figure 4. Search queries are
of the form “find all documents containing at least one of the
query terms, rank them by their BM25 score, and return the
document IDs of the top 20 documents”. All experiments
were run on a single PC based on an AMD Athlon64 3500+
CPU with 2 GB of main memory and 7,200-rpm SATA hard
drives. The input documents were read from a RAID-0 ar-

2http://www-nlpir.nist.gov/projects/terabyte/

ray built on top of two 7,200-rpm hard drives. The size of
the final index, containing full positional information for all
terms appearing in GOV2, was 61 GB.

Indexing and Query Processing Performance

In our first series of experiments, we had our retrieval sys-
tem process the command sequence, building an index for
GOV2 and concurrently processing 27,204 search queries.
We allowed the system to use 512 MB of main memory for
the in-memory index. For the 3 different merge strategies
and various threshold values T , we analyzed index mainte-
nance and query processing performance. From the results
shown in Figure 5, it is obvious that our new strategies
exhibit significantly better indexing performance than the
non-hybrid methods. For T = 106, HLMNC builds the index
17% faster than its non-hybrid counterpart (HSMNC: 49%;
HIMNC: 155%). On the other hand, query performance
only drops by 4% (HSMNC: 7%; HIMNC: 10%). Compared
to No Merge, HLMNC(T = 106) with 512 MB RAM only
needs 47% longer to build the final index (6.86 hours instead
of 4.66), but exhibits a vastly superior query processing per-
formance – 1.4 seconds per query, instead of 4.8 seconds.

For the non-contiguous hybrid strategies, decreasing T

consistently improves indexing performance and decreases
query performance in all cases. Moreover, there is a strict
ordering between the individual strategies. For instance, in
order for HSMNC to outperform Logarithmic Merge’s in-
dexing performance on GOV2, it needs T ≤ 2 · 105. At that
point, however, its query processing performance is much
worse than that of Logarithmic Merge (cf. Figure 5).

Space vs. Time Trade-offs

Our second series of experiments serves the purpose of
finding out how the amount of RAM available for the in-
memory index affects the index maintenance performance
of our strategies. We therefore varied the amount of mem-
ory available for the in-memory index between 64 MB and
1,024 MB. The results depicted in Figure 6 show that, while
the indexing performance of HLMNC is changed only in-
significantly, HLMC suffers severely from the reduced size of
the in-memory index, and index construction time steps up
from 7.39 hours (1024 MB) to 9.21 hours (64 MB) – a 25%
increase. For comparison, indexing time with HLMNC only
increases by 14% (Logarithmic Merge: 18%).

5. COMPLEXITY ANALYSIS
In this section, we generalize the experimental results pre-

sented in this paper in order to make them applicable to

other text collections. We present a complexity analysis,
based on the number of disk operations (measured by the
number of postings transferred to/from disk) performed by
the respective strategy. More specifically, we determine the
number of disk write operations necessary to index a text
collection of a given size. Since the number of read opera-
tions carried out during merge operations is upper-bounded
by the number of write operations (nothing is read twice),
this allows us to calculate the total number of disk opera-
tions performed (up to a constant factor).

We show that the HLMNC method only needs Θ(N) disk
operations to construct an index for a text collection of size
N . Asymptotically, this is the optimal indexing performance
and is only rivalled by the No Merge strategy used in off-
line index construction (which provides incompetitive query
performance if used in an on-line environment). Our analy-
sis is based on the assumption that the term distribution can
be expressed as a generalized Zipf distribution [16], i.e., that
the number of times the i-th most frequent word appears in
the text collection is inversely proportional to iα:

fT (i) =
c

iα

(rounded to the nearest integer), for some constants c and
α (Zipf originally proposed α = 1). The same assumption
has been made before for similar purposes (see, for exam-
ple, Cutting and Pedersen [4]). Figure 7 suggests that, for
the GOV2 collection, we have a Zipf exponent α somewhere
in the neighborhood of 1.2. While our analysis does not de-
pend on the fact that the term distribution is exactly Zipfian
(using a Zipf-Mandelbrot distribution [13] would lead to the
same result), it does rely on the convergence of the sum:

∞
X

i=1

1

iα
.

We therefore assume α > 1. The sum’s value is given by
Riemann’s Zeta function ζ(α) and can be approximated by

γ +

Z ∞

1

1

xα
dx = γ +

1

α − 1
, (1)

where γ is the Euler-Mascheroni constant [15] (γ =
0.5772 . . .). For realistic Zipf exponents (α < 1.4), the
relative approximation error is less than 1%. We will there-
fore always use the integral representation when we refer
to the value of the Zeta function. Also, we will denote the
term γ + 1

α−1
from (1) as γ∗

α. In order to achieve

N =

∞
X

i=1

c

iα
≈ c ·

„

γ +

Z ∞

1

1

xα
dx

«

= c ·

„

γ +
1

α − 1

«

and make the term distribution function consistent with the
size of the text collection N , we let

c :=
N

γ∗
α

and thus fT (i) :=
N

γ∗
α · iα

. (2)

We now use this term distribution to determine for a text
collection consisting of N tokens the number of postings that
are found in long posting lists (i.e., in lists that contain more
than T postings, as defined in section 3). This result is then
applied twice, once to analyze the disk complexity of Hybrid
Immediate Merge and then a second time to analyze the
disk complexity of Hybrid Logarithmic Merge.

100%

80%

60%

40%

20%

0%
 40 35 30 25 20 15 10 5 0

P
os

tin
gs

 in
 lo

ng
 li

st
s

(>
1,

00
0,

00
0)

Total number of postings (in billions)

Zipf, alpha=1.30
Zipf, alpha=1.20
Zipf, alpha=1.10
GOV2 collection

Figure 7: Comparing the term distribution of the
GOV2 collection with Zipf distributions for various
values of α. Zipf with α = 1.2 seems to provide a
lower bound for the total number of postings found
in lists that are longer than 1,000,000 elements.

We first determine for a collection of size N the number
of terms whose posting lists are longer than T postings, de-
noted as L(N, T). From the definition of fT (i), we know:

fT (i) ≥ T ⇔ i
α ≤

N

γ∗
α · T

⇔ i ≤

„

N

γ∗
α · T

«1/α

.

Hence, we have

L(N, T) =

$

„

N

γ∗
α · T

«1/α
%

∈ Θ

„

N1/α

T 1/α

«

. (3)

The total number of postings found in these lists is

bL(N,T)c
X

i=1

fT (i) ≈
N

γ∗
α

·

γ +

Z L(N,T)

1

x
−α

dx

!

=
N

γ∗
α

·

„

γ +

„

(L(N, T))1−α

1 − α
−

1

1 − α

««

= N −
N

γ∗
α · (α − 1)

·

„

N

γ∗
α · T

«
1−α

α

= N − N
1/α ·

T (1−1/α)

(α − 1)(γ∗
α)1/α

. (4)

It immediately follows that the total number of postings
found in short lists, i.e. in lists shorter than T postings, is

Ŝ(N, T) :=
N1/α · T (1−1/α)

(α − 1)(γ∗
α)1/α

∈ Θ
“

T
(1−1/α) · N1/α

”

. (5)

In other words, the relative number of postings found in
short lists converges to zero, as N – rhythmically and inex-
orably – is marching towards infinity. The speed of conver-
gence depends on the Zipf parameter α.

In the remainder of this section, we refer to the total
number of postings found in short lists as Ŝ(N, T), to the

number of postings found in long lists as L̂(N, T), and to
the number of long lists as L(N, T).

An Analysis of Hybrid Immediate Merge

Consider the Hybrid Immediate Merge strategy with
non-contiguous posting lists (HIMNC), as defined in section
3. In order to index a text collection containing N postings,
HIMNC needs to perform d N

M
e merge operations, where M

is the number of postings that can be stored in main mem-
ory. In every such merge operation, HIMNC moves all long
posting lists (containing at least T postings) it encounters
to the in-place-maintained part of the on-disk index. For

the merge-updated part of the on-disk index, which is the
result of this merge operation, this means that it does not
contain any lists that are longer than T postings.

Now, consider the merge-updated part of the on-disk in-
dex that results from the k-th merge operation, i.e., that is
created after k ·M tokens have been added to the collection.
This inverted file contains two types of lists:

• Genuine short lists, each having ≤ T postings.

• Short parts of long lists, each having ≤ T postings.

The latter happens if, for instance, the posting list for a
term was moved from the merge-maintained to the in-place-
maintained part of the index in the (k − 1)-th re-merge op-
eration and the number of postings accumulated for that
term between the (k−1)-th and the k-th merge operation is
smaller than T so that the hybrid strategy leaves these new
postings in the merge-updated part of the index.

We can easily give a lower bound for the number of post-
ings P̂ that are stored in the merge part of the index after
the k-th merge operation:

P̂ (k · M, T) ≥ Ŝ(k · M, T) ∈ Ω

T ·

„

k · M

T

«1/α
!

(using equation 5). We can also give an upper bound:

P̂ (k · M, T) ≤ Ŝ(k · M, T) + T · L(k · M, T)

∈ O
“

T
(1−1/α) · (k · M)1/α

”

+ O

„

T ·
(k · M)1/α

T 1/α

«

(using equations 3 and 5). It follows that

P̂ (k · M, T) ∈ Θ
“

T
(1−1/α) · (k · M)1/α

”

.

Of course, this is also the number of disk write operations
necessary to create the particular index. Since, for a text
collection of size N , the number of disk operations spent on
adding postings to the in-place part of the index is

L̂(N, T) ∈ Θ(N),

the total number of disk operations needed to build an in-
verted index for such a text collection is:

Θ(N) (in-place part)

+

d N

M
e

X

k=1

Θ
“

T
(1−1/α) · (k · M)1/α

”

(merge part)

= Θ

„

T
(1−1/α) ·

N (1+1/α)

M

«

. (6)

For α = 1.2 and constant T , this gives us an index mainte-

nance disk complexity of Θ(N1.833

M
), clearly better than the

Θ(N2

M
) complexity of non-hybrid Immediate Merge.

An Analysis of Hybrid Logarithmic Merge

Finally, let us consider the Hybrid Logarithmic Merge

strategy with non-contiguous posting lists (HLMNC), as de-
fined in section 3. Like every index maintenance strategy
discussed in this paper, HLMNC accumulates postings in
main memory until there is no more memory available, at
which point an on-disk sub-index is created from the in-
memory data. After M tokens have been added to the col-
lection, two on-disk inverted files are created:

• a merge-maintained inverted file (with contiguous

posting lists) containing Ŝ(M, T) postings;

• an in-place-maintained inverted file containing L̂(M, T)
postings.

We refer to the merge-maintained inverted file, created after
M tokens have been added, as an index of generation 0.

After the first on-disk inverted file has been created, when-
ever 2k · M tokens have been added to the collection (for
some integer k), we have to merge two merge-maintained
sub-indices of generation k−1 into a new merge-maintained
index of generation k. This is the standard procedure of
Logarithmic Merge. Here, however, because we follow a
hybrid strategy, all long lists encountered during this merge
operations are moved to the in-place part of the index in-
stead of the new merge-maintained inverted file of genera-
tion k. Using the same argument as before (for HIMNC),

we can give a Θ-bound for the number of postings P̂ in this
new merge-maintained inverted file of generation k:

P̂ (2k · M, T) ∈ Θ
“

T
(1−1/α) · (2k · M)1/α

”

. (7)

Therefore, the total number of disk write operations D(k)
performed during merge operations, before and including
the creation of this new inverted file of generation k, is:

D(k) = P̂ (2k · M, T) + 2 · D(k − 1) (8)

=

k
X

i=0

2k−i · P̂ (2i · M, T) (9)

∈ 2k ·
k
X

i=0

2−i · Θ
“

T
(1−1/α) · (2i · M)1/α

”

(10)

(using equation 7). Hence, we have:

D(k) ∈ Θ

T
(1−1/α) · 2k · M1/α ·

k
X

i=0

(2
1

α
−1)i

!

(11)

= Θ
“

T
(1−1/α) · 2k · M1/α

”

(12)

⊆ O
“

T
(1−1/α) · 2k · M

”

. (13)

For a text collection of size N = 2k · M , the number of disk
operations spent on adding postings to the in-place part of
the index is L̂(N, T) ∈ Θ(N). Thus, the total number of
disk operations needed to build an inverted index for a text
collection of size N is:

Θ(N) (for the in-place part)

+ O
“

T
(1−1/α) · N

”

(for the merge part).

Since T is a constant, this means we need Θ(N) disk opera-
tions. HLMNC’s disk complexity is asymptotically optimal.

Validation

In order to convince the suspicious reader of the correct-
ness of the results obtained in this section, we use them to
predict how changing the amount of available main mem-
ory M and the threshold value T affects the overall index
maintenance performance of our system. We assume that
the GOV2 collection, consisting of 42 billion tokens, obeys
Zipf’s law with α = 1.25.

HIMNC, with T = 2 · 106 and 512 MB of RAM, needs
32.46 hours to index the GOV2 collection. Since the No

Merge strategy, using the same amount of main memory,
indexes the collection in 4.66 hours, the index maintenance
overhead of HIMNC(T = 2 · 106) is 27.80 hours. According
to equation 6, altering T by a factor x changes the total
index maintenance overhead by a factor x1−1/α. Thus, the
expected total indexing time is:

• 27.80 · 20.2 + 4.66 = 36.59 hours for T = 4 · 106,

• 27.80 · (1
2
)0.2 + 4.66 = 28.86 hours for T = 1 · 106, and

• 27.80 · (1
4
)0.2 + 4.66 = 25.73 hours for T = 0.5 · 106.

The experimentally obtained index construction times are
37.42, 27.61, and 23.43 hours, respectively – close to the
predicted numbers.

HLMNC, with T = 106 and 512 MB of RAM, needs 6.87
hours to build the index, performing 150 merge operations
(k ≈ 7). The overhead, compared to No Merge, is 2.21
hours. Decreasing the available amount of memory to 256
MB decreases M by a factor of 2 and increases k by 1. Ac-
cording to equation 12, this increases the index maintenance
overhead by a factor

21 · (
1

2
)1/α ≈ 1.1487,

from 2.21 hours to 2.54 hours. We therefore predict a to-
tal indexing time of 4.66 + 2.54 = 7.20 hours. The time
measured in our experiments is 7.19 hours, very close to our
prediction. Similarly, for 1024 MB of main memory, we pre-
dict a total index construction time of 6.58 hours. Again,
this is close to the experimentally obtained time, 6.66 hours.

6. CONCLUSION & FUTURE WORK
We have presented a new family of hybrid index main-

tenance strategies to be used in on-line index construction
for growing text collections. Like previous hybrid strate-
gies, they are based on a distinction between long and short
posting lists. Our experimental evaluation has shown that
the new strategies outperform previous index maintenance
strategies, including existing hybrid strategies – which do
not work very well if only a small amount of memory is
available for the in-memory index.

We have given a theoretical analysis of the disk complexity
of our hybrid strategies, proving that the combination of
Logarithmic Merge (for short lists) and in-place update
with non-contiguous list segments (for long lists) results in
an overall index maintenance disk complexity of O(N) for a
text collection of size N . This is asymptotically optimal.

The main shortcoming of the new strategies is their
slightly reduced query processing performance, caused by
internal fragmentation in the on-disk posting lists. We think
that this problem can be solved by integrating overalloca-
tion strategies (and possibly relocation strategies) into the
in-place part and will further investigate in this direction.

7. REFERENCES
[1] S. Büttcher and C. L. A. Clarke. Indexing Time vs.

Query Time Trade-offs in Dynamic Information
Retrieval Systems. In Proceedings of the 14th ACM
Conf. on Information and Knowledge Management
(CIKM 2005), Bremen, Germany, November 2005.

[2] S. Büttcher and C. L. A. Clarke. A Hybrid Approach
to Index Maintenance in Dynamic Text Retrieval
Systems. In Proceedings of the 28th European

Conference on Information Retrieval (ECIR 2006),
London, UK, April 2006.

[3] T. Chiueh and L. Huang. Efficient Real-Time Index
Updates in Text Retrieval Systems. Technical report,
SUNY at Stony Brook, NY, USA, August 1998.

[4] D. R. Cutting and J. O. Pedersen. Optimization for
Dynamic Inverted Index Maintenance. In Proceedings
of the 13th ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 405–411,
New York, USA, 1990.

[5] S. Heinz and J. Zobel. Efficient Single-Pass Index
Construction for Text Databases. Journal of the
American Society for Information Science and
Technology, 54(8):713–729, 2003.

[6] N. Lester, A. Moffat, and J. Zobel. Fast On-Line
Index Construction by Geometric Partitioning. In
Proceedings of the 14th ACM Conference on
Information and Knowledge Management (CIKM
2005), Bremen, Germany, November 2005.

[7] N. Lester, J. Zobel, and H. E. Williams. In-Place
versus Re-Build versus Re-Merge: Index Maintenance
Strategies for Text Retrieval Systems. In Proceedings
of the 27th Conference on Australasian Computer
Science, Darlinghurst, Australia, 2004.

[8] N. Lester, J. Zobel, and H. E. Williams. Efficient
Online Index Maintenance for Text Retrieval Systems.
Information Processing & Management, 42, July 2006.

[9] A. Moffat and T. C. Bell. In-Situ generation of
Compressed Inverted Files. Journal of the American
Society of Information Science, 46(7):537–550, 1995.

[10] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel.
Compression of Inverted Indexes for Fast Query
Evaluation. In Proceedings of the 25th ACM SIGIR
Conference on Research and Development in
Information Retrieval, 2002.

[11] W.-Y. Shieh and C.-P. Chung. A Statistics-Based
Approach to Incrementally Update Inverted Files. Inf.
Processing and Management, 41(2):275–288, 2005.

[12] K. A. Shoens, A. Tomasic, and H. Garćıa-Molina.
Synthetic Workload Performance Analysis of
Incremental Updates. In Proceedings of the 17th ACM
SIGIR Conference on Research and Development in
Information Retrieval, 1994.

[13] Z. K. Silagadze. Citations and the Zipf-Mandelbrot’s
Law. Complex Systems, 11:487, 1997.

[14] A. Tomasic, H. Garćıa-Molina, and K. Shoens.
Incremental Updates of Inverted Lists for Text
Document Retrieval. In Proceedings of the 1994 ACM
SIGMOD Conference on Management of Data, pages
289–300, New York, USA, 1994.

[15] E. W. Weisstein. Euler-Mascheroni Constant. From
MathWorld – http://mathworld.wolfram.com/Euler-
MascheroniConstant.html.

[16] G. K. Zipf. Human Behavior and the Principle of
Least-Effort. Addison-Wesley, Cambridge, USA, 1949.

[17] J. Zobel, S. Heinz, and H. E. Williams. In-Memory
Hash Tables for Accumulating Text Vocabularies.
Information Processing Letters, 80(6):271–277, 2001.

[18] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted
Files versus Signature Files for Text Indexing. ACM
Trans. on Database Systems, 23(4):453–490, 1998.

